面试的过程也是气质是否和公司搭调的过程,每个公司都有自己的管理特色。找到价值观相对契合的企业非常重要。这里是面试时面试官问过的问题,或许平时开发中根本没有想过这些问题,但注意更多细节总是有益处的,总结如下。
Java中线程安全的类
- ArrayList线程不安全,Vector线程安全;
- HashMap线程不安全,HashTable线程安全,ConcurrentHashMap线程安全;
- StringBuilder线程不安全,StringBuffer线程安全。
String、StringBuilder、StringBuffer区别
简要的说, String 类型和 StringBuffer类型的主要性能区别其实在于 String 是不可变的对象, 因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,然后将指针指向新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后, JVM 的 GC 就会进行垃圾回收,执行垃圾回收时是会block住程序的,影响性能。而如果是使用 StringBuffer 类则结果就不一样了,每次结果都会对 StringBuffer 对象本身进行操作,而不是生成新的对象,再改变对象引用。所以在一般情况下我们推荐使用 StringBuffer ,特别是字符串对象经常改变的情况下。而在某些特别情况下, String 对象的字符串拼接其实是被 JVM 解释成了 StringBuffer 对象的拼接,所以这些时候 String 对象的速度并不会比 StringBuffer 对象慢,而特别是以下的字符串对象生成中, String 效率是远要比 StringBuffer 快的:
1 | String S1 = “This is only a” + “ simple” + “ test”; |
你会很惊讶的发现,生成 String S1 对象的速度简直太快了,而这个时候 StringBuffer 居然速度上根本一点都不占优势。其实这是 JVM 的一个把戏,在 JVM 里:
1 | String S1 = “This is only a” + “ simple” + “test”; |
其实就是:
1 | String S1 = “This is only a simple test”; |
所以当然不需要太多的时间了。但大家这里要注意的是,如果你的字串是来自另外的 String 对象的话,速度就没那么快了,譬如:
1 | String S2 = “This is only a”; |
这时候 JVM 会规规矩矩的按照原来的方式去做
在大部分情况下 StringBuffer 优于 String
StringBuffer
Java.lang.StringBuffer线程安全的可变字符序列。一个类似于 String 的字符串缓冲区,但不能修改。虽然在任意时间点上它都包含某种特定的字符序列,但通过某些方法调用可以改变该序列的长度和内容。
可将字符串缓冲区安全地用于多个线程。可以在必要时对这些方法进行同步,因此任意特定实例上的所有操作就好像是以串行顺序发生的,该顺序与所涉及的每个线程进行的方法调用顺序一致。
StringBuffer 上的主要操作是 append 和 insert 方法,可重载这些方法,以接受任意类型的数据。每个方法都能有效地将给定的数据转换成字符串,然后将该字符串的字符追加或插入到字符串缓冲区中。append 方法始终将这些字符添加到缓冲区的末端;而 insert 方法则在指定的点添加字符。
例如,如果 z 引用一个当前内容是“start”的字符串缓冲区对象,则此方法调用 z.append(“le”) 会使字符串缓冲区包含“startle”,而 z.insert(4, “le”) 将更改字符串缓冲区,使之包含“starlet”。
在大部分情况下 StringBuilder 优于 StringBuffer
java.lang.StringBuilde
java.lang.StringBuilder一个可变的字符序列是5.0新增的。此类提供一个与 StringBuffer 兼容的 API,但不保证同步。该类被设计用作 StringBuffer 的一个简易替换,用在字符串缓冲区被单个线程使用的时候(这种情况很普遍)。如果可能,建议优先采用该类,因为在大多数实现中,它比 StringBuffer 要快。两者的方法基本相同。
使用Spring框架的原因
非侵入式:支持基于POJO的编程模式,不强制性的要求实现Spring框架中的接口或继承Spring框架中的类。
IoC容器:IoC容器帮助应用程序管理对象以及对象之间的依赖关系,对象之间的依赖关系如果发生了改变只需要修改配置文件而不是修改代码,因为代码的修改可能意味着项目的重新构建和完整的回归测试。有了IoC容器,程序员再也不需要自己编写工厂、单例,这一点特别符合Spring的精神”不要重复的发明轮子”。采用依赖注入技术之后,A的代码只需要定义一个私有的B对象,不需要直接new来获得这个对象,而是通过相关的容器控制程序来将B对象在外部new出来并注入到A类里的引用中。而具体获取的方法、对象被获取时的状态由配置文件(如XML)来指定。
AOP(面向切面编程):日志代码往往水平地散布在所有对象层次中,而与它所散布到的对象的核心功能毫无关系。对于其他类型的代码,如安全性、异常处理和透明的持续性也是如此。这种散布在各处的无关的代码被称为横切(cross-cutting)代码,在OOP设计中,它导致了大量代码的重复,而不利于各个模块的重用。将所有的横切关注功能封装到切面(aspect)中,通过配置的方式将横切关注功能动态添加到目标代码上,进一步实现了业务逻辑和系统服务之间的分离。另一方面,有了AOP程序员可以省去很多自己写代理类的工作。AOP把软件系统分为两个部分:核心关注点和横切关注点。业务处理的主要流程是核心关注点,与之关系不大的部分是横切关注点。横切关注点的一个特点是,他们经常发生在核心关注点的多处,而各处都基本相似。比如权限认证、日志、事务处理。Aop 的作用在于分离系统中的各种关注点,将核心关注点和横切关注点分离开来。正如Avanade公司的高级方案构架师Adam Magee所说,AOP的核心思想就是“将应用程序中的商业逻辑同对其提供支持的通用服务进行分离。”
MVC:Spring的MVC框架是非常优秀的,Spring MVC的配置相对于Struts 2来说较少,性能方面,Spring比Struts较快,开发效率Spring MVC确实比struts2高,Spring3 MVC更容易实现Restful URL。Struts更加很多新的技术点,比如拦截器、值栈及OGNL(Object-Graph Navigation Language)表达式,学习成本较高,springmvc 比较简单,很较少的时间都能上手。
事务管理:Spring以宽广的胸怀接纳多种持久层技术,并且为其提供了声明式的事务管理,在不需要任何一行代码的情况下就能够完成事务管理。
其他:选择Spring框架的原因还远不止于此,Spring为Java企业级开发提供了一站式选择,你可以在需要的时候使用它的部分和全部,更重要的是,你甚至可以在感觉不到Spring存在的情况下,在你的项目中使用Spring提供的各种优秀的功能。
大型网站在架构上应当考虑哪些问题
分层(Layer):分层是处理任何复杂系统最常见的手段之一,将系统横向切分成若干个层面,每个层面只承担单一的职责,然后通过下层为上层提供的基础设施和服务以及上层对下层的调用来形成一个完整的复杂的系统。计算机网络的开放系统互联参考模型(OSI[Open Systems Interconnection]/RM)和Internet的TCP/IP模型都是分层结构,大型网站的软件系统也可以使用分层的理念将其分为持久层(提供数据存储和访问服务)、业务层(处理业务逻辑,系统中最核心的部分)和表示层(系统交互、视图展示)。需要指出的是:(1)分层是逻辑上的划分,在物理上可以位于同一设备上也可以在不同的设备上部署不同的功能模块,这样可以使用更多的计算资源来应对用户的并发访问;(2)层与层之间应当有清晰的边界,这样分层才有意义,才更利于软件的开发和维护。
分割(Split):分割是对软件的纵向切分。我们可以将大型网站的不同功能和服务分割开,形成高内聚低耦合的功能模块(单元)。在设计初期可以做一个粗粒度的分割,将网站分割为若干个功能模块,后期还可以进一步对每个模块进行细粒度的分割,这样一方面有助于软件的开发和维护,另一方面有助于分布式的部署,提供网站的并发处理能力和功能的扩展。
分布式(Distribution):除了上面提到的内容,网站的静态资源(JavaScript、CSS、图片等)也可以采用独立分布式部署并采用独立的域名,这样可以减轻应用服务器的负载压力,也使得浏览器对资源的加载更快。数据的存取也应该是分布式的,传统的商业级关系型数据库产品基本上都支持分布式部署,而新生的NoSQL产品几乎都是分布式的。当然,网站后台的业务处理也要使用分布式技术,例如查询索引的构建、数据分析等,这些业务计算规模庞大,可以使用Hadoop以及MapReduce分布式计算框架来处理。
集群(Cluster):集群使得有更多的服务器提供相同的服务,可以更好的提供对并发的支持。
缓存(Cache):所谓缓存就是用空间换取时间的技术,将数据尽可能放在距离计算最近的位置。使用缓存是网站优化的第一定律。我们通常说的CDN、反向代理、热点数据都是对缓存技术的使用。
异步(Async):异步是实现软件实体之间解耦合的又一重要手段。异步架构是典型的生产者消费者模式,二者之间没有直接的调用关系,只要保持数据结构不变,彼此功能实现可以随意变化而不互相影响,这对网站的扩展非常有利。使用异步处理还可以提高系统可用性,加快网站的响应速度(用Ajax加载数据就是一种异步技术),同时还可以起到削峰作用(应对瞬时高并发)。能推迟处理的都要推迟处理”是网站优化的第二定律,而异步是践行网站优化第二定律的重要手段。
冗余(Redundancy):各种服务器都要提供相应的冗余服务器以便在某台或某些服务器宕机时还能保证网站可以正常工作,同时也提供了灾难恢复的可能性。冗余是网站高可用性的重要保证。
你使用过的应用服务器优化技术有哪些
分布式缓存:缓存的本质就是内存中的哈希表,如果设计一个优质的哈希函数,那么理论上哈希表读写的渐近时间复杂度为O(1)。缓存主要用来存放那些读写比很高、变化很少的数据,这样应用程序读取数据时先到缓存中读取,如果没有或者数据已经失效再去访问数据库或文件系统,并根据拟定的规则将数据写入缓存。对网站数据的访问也符合二八定律(Pareto分布,幂律分布),即80%的访问都集中在20%的数据上,如果能够将这20%的数据缓存起来,那么系统的性能将得到显著的改善。当然,使用缓存需要解决以下几个问题:
1.频繁修改的数据;
2.数据不一致与脏读;
3.缓存雪崩(可以采用分布式缓存服务器集群加以解决,memcached是广泛采用的解决方案);
4.缓存预热;
5.缓存穿透(恶意持续请求不存在的数据)。异步操作:可以使用消息队列将调用异步化,通过异步处理将短时间高并发产生的事件消息存储在消息队列中,从而起到削峰作用。电商网站在进行促销活动时,可以将用户的订单请求存入消息队列,这样可以抵御大量的并发订单请求对系统和数据库的冲击。目前,绝大多数的电商网站即便不进行促销活动,订单系统都采用了消息队列来处理。
使用集群。
代码优化:
1.多线程:基于Java的Web开发基本上都通过多线程的方式响应用户的并发请求,使用多线程技术在编程上要解决线程安全问题,主要可以考虑以下几个方面:A. 将对象设计为无状态对象(这和面向对象的编程观点是矛盾的,在面向对象的世界中被视为不良设计),这样就不会存在并发访问时对象状态不一致的问题。B. 在方法内部创建对象,这样对象由进入方法的线程创建,不会出现多个线程访问同一对象的问题。使用ThreadLocal将对象与线程绑定也是很好的做法,这一点在前面已经探讨过了。C. 对资源进行并发访问时应当使用合理的锁机制。
2.非阻塞I/O: 使用单线程和非阻塞I/O是目前公认的比多线程的方式更能充分发挥服务器性能的应用模式,基于Node.js构建的服务器就采用了这样的方式。Java在JDK 1.4中就引入了NIO(Non-blocking I/O),在Servlet 3规范中又引入了异步Servlet的概念,这些都为在服务器端采用非阻塞I/O提供了必要的基础。
3.资源复用:资源复用主要有两种方式,一是单例,二是对象池,我们使用的数据库连接池、线程池都是对象池化技术,这是典型的用空间换取时间的策略,另一方面也实现对资源的复用,从而避免了不必要的创建和释放资源所带来的开销。
你用过的网站前端优化的技术有哪些
- 浏览器访问优化:
- 减少HTTP请求数量:合并CSS、合并JavaScript、合并图片(CSS Sprite)
- 使用浏览器缓存:通过设置HTTP响应头中的Cache-Control和Expires属性,将CSS、JavaScript、图片等在浏览器中缓存,当这些静态资源需要更新时,可以更新HTML文件中的引用来让浏览器重新请求新的资源
- 启用压缩
- CSS前置,JavaScript后置
- 减少Cookie传输
CDN加速:CDN(Content Distribute Network)的本质仍然是缓存,将数据缓存在离用户最近的地方,CDN通常部署在网络运营商的机房,不仅可以提升响应速度,还可以减少应用服务器的压力。当然,CDN缓存的通常都是静态资源。
反向代理:反向代理相当于应用服务器的一个门面,可以保护网站的安全性,也可以实现负载均衡的功能,当然最重要的是它缓存了用户访问的热点资源,可以直接从反向代理将某些内容返回给用户浏览器。
什么是XSS攻击?什么是SQL注入攻击?什么是CSRF攻击?
XSS(Cross Site Script,跨站脚本攻击)是向网页中注入恶意脚本在用户浏览网页时在用户浏览器中执行恶意脚本的攻击方式。跨站脚本攻击分有两种形式:反射型攻击(诱使用户点击一个嵌入恶意脚本的链接以达到攻击的目标,目前有很多攻击者利用论坛、微博发布含有恶意脚本的URL就属于这种方式)和持久型攻击(将恶意脚本提交到被攻击网站的数据库中,用户浏览网页时,恶意脚本从数据库中被加载到页面执行,QQ邮箱的早期版本就曾经被利用作为持久型跨站脚本攻击的平台)。XSS虽然不是什么新鲜玩意,但是攻击的手法却不断翻新,防范XSS主要有两方面:消毒(对危险字符进行转义)和HttpOnly(防范XSS攻击者窃取Cookie数据)。
SQL注入攻击是注入攻击最常见的形式(此外还有OS注入攻击(Struts 2的高危漏洞就是通过OGNL实施OS注入攻击导致的)),当服务器使用请求参数构造SQL语句时,恶意的SQL被嵌入到SQL中交给数据库执行。SQL注入攻击需要攻击者对数据库结构有所了解才能进行,攻击者想要获得表结构有多种方式:(1)如果使用开源系统搭建网站,数据库结构也是公开的(目前有很多现成的系统可以直接搭建论坛,电商网站,虽然方便快捷但是风险是必须要认真评估的);(2)错误回显(如果将服务器的错误信息直接显示在页面上,攻击者可以通过非法参数引发页面错误从而通过错误信息了解数据库结构,Web应用应当设置友好的错误页,一方面符合最小惊讶原则,一方面屏蔽掉可能给系统带来危险的错误回显信息);(3)盲注。防范SQL注入攻击也可以采用消毒的方式,通过正则表达式对请求参数进行验证,此外,参数绑定也是很好的手段,这样恶意的SQL会被当做SQL的参数而不是命令被执行,JDBC中的PreparedStatement就是支持参数绑定的语句对象,从性能和安全性上都明显优于Statement。
CSRF攻击(Cross Site Request Forgery,跨站请求伪造)是攻击者通过跨站请求,以合法的用户身份进行非法操作(如转账或发帖等)。CSRF的原理是利用浏览器的Cookie或服务器的Session,盗取用户身份,其原理如下图所示。防范CSRF的主要手段是识别请求者的身份,主要有以下几种方式:(1)在表单中添加令牌(token);(2)验证码;(3)检查请求头中的Referer(前面提到防图片盗链接也是用的这种方式)。令牌和验证都具有一次消费性的特征,因此在原理上一致的,但是验证码是一种糟糕的用户体验,不是必要的情况下不要轻易使用验证码,目前很多网站的做法是如果在短时间内多次提交一个表单未获得成功后才要求提供验证码,这样会获得较好的用户体验。
什么是领域模型(domain model)?贫血模型(anaemic domain model)和充血模型(rich domain model)有什么区别?
领域模型是领域内的概念类或现实世界中对象的可视化表示,又称为概念模型或分析对象模型,它专注于分析问题领域本身,发掘重要的业务领域概念,并建立业务领域概念之间的关系。贫血模型是指使用的领域对象中只有setter和getter方法(POJO),所有的业务逻辑都不包含在领域对象中而是放在业务逻辑层。有人将我们这里说的贫血模型进一步划分成失血模型(领域对象完全没有业务逻辑)和贫血模型(领域对象有少量的业务逻辑),我们这里就不对此加以区分了。充血模型将大多数业务逻辑和持久化放在领域对象中,业务逻辑(业务门面)只是完成对业务逻辑的封装、事务和权限等的处理。下面两张图分别展示了贫血模型和充血模型的分层架构。更加细粒度的有失血模型,贫血模型,充血模型,胀血模型。贫血模型就是domain ojbect包含了不依赖于持久化的领域逻辑,而那些依赖持久化的领域逻辑被分离到Service层。失血模型简单来说,就是domain object只有属性的getter/setter方法的纯数据类,所有的业务逻辑完全由business object来完成(又称Transaction Script),这种模型下的domain object被Martin Fowler称之为“贫血的domain object”。充血模型和第二种模型差不多,所不同的就是如何划分业务逻辑,即认为,绝大多业务逻辑都应该被放在domain object里面(包括持久化逻辑),而Service层应该是很薄的一层,仅仅封装事务和少量逻辑,不和DAO层打交道。
描述一下JVM加载class文件的原理机制
类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。JVM中类的装载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。
由于Java的跨平台性,经过编译的Java源程序并不是一个可执行程序,而是一个或多个类文件。当Java程序需要使用某个类时,JVM会确保这个类已经被加载、连接(验证、准备和解析)和初始化。类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件,然后产生与所加载类对应的Class对象。加载完成后,Class对象还不完整,所以此时的类还不可用。当类被加载后就进入连接阶段,这一阶段包括验证、准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。最后JVM对类进行初始化,包括:A. 如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;B. 如果类中存在初始化语句,就依次执行这些初始化语句。
1 | 编译 -> 加载 -> 链接(验证+准备+解析)->初始化(使用前的准备)->使用-> 卸载 |
类的加载是由类加载器完成的,类加载器包括:根加载器(BootStrap)、扩展加载器(Extension)、系统加载器(System)和用户自定义类加载器(java.lang.ClassLoader的子类)。从Java 2(JDK 1.2)开始,类加载过程采取了父亲委托机制(PDM[Parerent Delegate Mechanism])。PDM更好的保证了Java平台的安全性,在该机制中,JVM自带的Bootstrap是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载。JVM不会向Java程序提供对Bootstrap的引用。下面是关于几个类加载器的说明:
- Bootstrap:一般用本地代码实现,负责加载JVM基础核心类库(rt.jar);
- Extension:从java.ext.dirs系统属性所指定的目录中加载类库,它的父加载器是Bootstrap;
- System:又叫应用类加载器,其父类是Extension。它是应用最广泛的类加载器。它从环境变量classpath或者系统属性java.class.path所指定的目录中记载类,是用户自定义加载器的默认父加载器。
什么条件下会触发垃圾回收
触发Full GC
除直接调用System.gc外,触发Full GC执行的情况有如下四种。
- 旧生代空间不足
旧生代空间只有在新生代对象转入及创建为大对象、大数组时才会出现不足的现象,当执行Full GC后空间仍然不足,则抛出如下错误:java.lang.OutOfMemoryError: Java heap space
,为避免以上两种状况引起的Full GC,调优时应尽量做到让对象在Minor GC阶段被回收、让对象在新生代多存活一段时间及不要创建过大的对象及数组。
- Permanet Generation空间满
Permanet Generation中存放的为一些class的信息等,当系统中要加载的类、反射的类和调用的方法较多时,Permanet Generation可能会被占满,在未配置为采用CMS GC的情况下会执行Full GC。如果经过Full GC仍然回收不了,那么JVM会抛出如下错误信息:java.lang.OutOfMemoryError: PermGen space
。为避免Perm Gen占满造成Full GC现象,可采用的方法为增大Perm Gen空间或转为使用CMS GC。
- CMS GC时出现promotion failed和concurrent mode failure
对于采用CMS进行旧生代GC的程序而言,尤其要注意GC日志中是否有promotion failed和concurrent mode failure两种状况,当这两种状况出现时可能会触发Full GC。
promotion failed是在进行Minor GC时,survivor space放不下、对象只能放入旧生代,而此时旧生代也放不下造成的;concurrent mode failure是在执行CMS GC的过程中同时有对象要放入旧生代,而此时旧生代空间不足造成的。CMS(Concurrent Mark-Sweep)是以牺牲吞吐量为代价来获得最短回收停顿时间的垃圾回收器。对于要求服务器响应速度的应用上,这种垃圾回收器非常适合。
应对措施为:增大survivor space、旧生代空间或调低触发并发GC的比率,但在JDK 5.0+、6.0+的版本中有可能会由于JDK的bug29导致CMS在remark完毕后很久才触发sweeping动作。对于这种状况,可通过设置-XX: CMSMaxAbortablePrecleanTime=5(单位为ms)来避免。
- 统计得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间
这是一个较为复杂的触发情况,Hotspot为了避免由于新生代对象晋升到旧生代导致旧生代空间不足的现象,在进行Minor GC时,做了一个判断,如果之前统计所得到的Minor GC晋升到旧生代的平均大小大于旧生代的剩余空间,那么就直接触发Full GC。
例如程序第一次触发Minor GC后,有6MB的对象晋升到旧生代,那么当下一次Minor GC发生时,首先检查旧生代的剩余空间是否大于6MB,如果小于6MB,则执行Full GC。
当新生代采用PS GC时,方式稍有不同,PS GC是在Minor GC后也会检查,例如上面的例子中第一次Minor GC后,PS GC会检查此时旧生代的剩余空间是否大于6MB,如小于,则触发对旧生代的回收。
除了以上4种状况外,对于使用RMI来进行RPC或管理的Sun JDK应用而言,默认情况下会一小时执行一次Full GC。可通过在启动时通过- java -Dsun.rmi.dgc.client.gcInterval=3600000来设置Full GC执行的间隔时间或通过-XX:+ DisableExplicitGC来禁止RMI调用System.gc。
对象分配规则
1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。
2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。
3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。
4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。
5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。
CAS和AQS
CAS(Compare and Swap,比较并交换):乐观锁的核心算法是CAS(Compareand Swap,比较并交换),它涉及到三个操作数:内存值、预期值、新值。当且仅当预期值和内存值相等时才将内存值修改为新值。这样处理的逻辑是,首先检查某块内存的值是否跟之前我读取时的一样,如不一样则表示期间此内存值已经被别的线程更改过,舍弃本次操作,否则说明期间没有其他线程对此内存值操作,可以把新值设置给此块内存。如图2-5-4-1,有两个线程可能会差不多同时对某内存操作,线程二先读取某内存值作为预期值,执行到某处时线程二决定将新值设置到内存块中,如果线程一在此期间修改了内存块,则通过CAS即可以检测出来,假如检测没问题则线程二将新值赋予内存块。
它也有缺点:
① 观锁只能保证一个共享变量的原子操作。如上例子,自旋过程中只能保证value变量的原子性,这时如果多一个或几个变量,乐观锁将变得力不从心,但互斥锁能轻易解决,不管对象数量多少及对象颗粒度大小。
② 长时间自旋可能导致开销大。假如CAS长时间不成功而一直自旋,会给CPU带来很大的开销。
③ ABA问题。CAS的核心思想是通过比对内存值与预期值是否一样而判断内存值是否被改过,但这个判断逻辑不严谨,假如内存值原来是A,后来被一条线程改为B,最后又被改成了A,则CAS认为此内存值并没有发生改变,但实际上是有被其他线程改过的,这种情况对依赖过程值的情景的运算结果影响很大。解决的思路是引入版本号,每次变量更新都把版本号加一。
乐观锁是对悲观锁的改进,虽然它也有缺点,但它确实已经成为提高并发性能的主要手段,而且jdk中的并发包也大量使用基于CAS的乐观锁。
AQS(Abstract Queued Synchronizer):juc(Java.util.concurrent)里所有的这些锁机制都是基于AQS(Abstract Queued Synchronizer)框架上构建的。
MyBatis与Hibernate区别
MyBatis与Hibernate一样是个ORM(Object-relational Mapping)数据库框架。它与Hibernate区别,总结出以下几点:
- hibernate是全自动,而mybatis是半自动。
hibernate完全可以通过对象关系模型实现对数据库的操作,拥有完整的JavaBean对象与数据库的映射结构来自动生成sql。而mybatis仅有基本的字段映射,对象数据以及对象实际关系仍然需要通过手写sql来实现和管理。 - hibernate数据库移植性远大于mybatis。
hibernate通过它强大的映射结构和hql语言,大大降低了对象与数据库(Oracle、MySQL等)的耦合性,而mybatis由于需要手写sql,因此与数据库的耦合性直接取决于程序员写sql的方法,如果sql不具通用性而用了很多某数据库特性的sql语句的话,移植性也会随之降低很多,成本很高。 - Hibernate拥有完整的日志系统,MyBatis则欠缺一些。
hibernate日志系统非常健全,涉及广泛,包括:sql记录、关系异常、优化警告、缓存提示、脏数据警告等;而mybatis则除了基本记录功能外,功能薄弱很多。 - mybatis相比hibernate需要关心很多细节
hibernate配置要比mybatis复杂的多,学习成本也比mybatis高。但也正因为mybatis使用简单,才导致它要比hibernate关心很多技术细节。mybatis由于不用考虑很多细节,开发模式上与传统jdbc区别很小,因此很容易上手并开发项目,但忽略细节会导致项目前期bug较多,因而开发出相对稳定的软件很慢,而开发出软件却很快。hibernate则正好与之相反。但是如果使用hibernate很熟练的话,实际上开发效率丝毫不差于甚至超越mybatis。 - sql直接优化上,mybatis要比hibernate方便很多
由于mybatis的sql都是写在xml里,因此优化sql比hibernate方便很多。而hibernate的sql很多都是自动生成的,无法直接维护sql;虽有hql,但功能还是不及sql强大,见到报表等变态需求时,hql也歇菜,也就是说hql是有局限的;Hibernate虽然也支持原生sql,但开发模式上却与orm不同,需要转换思维,因此使用上不是非常方便。总之写sql的灵活度上Hibernate不及MyBatis。
总结:
MyBatis:小巧、方便、高效、简单、直接、半自动
Hibernate:强大、方便、高效、复杂、绕弯子、全自动
mybatis:
- 入门简单,即学即用,提供了数据库查询的自动对象绑定功能,而且延续了很好的SQL使用经验,对于没有那么高的对象模型要求的项目来说,相当完美。
- 可以进行更为细致的SQL优化,可以减少查询字段。
- 缺点就是框架还是比较简陋,功能尚有缺失,虽然简化了数据绑定代码,但是整个底层数据库查询实际还是要自己写的,工作量也比较大,而且不太容易适应快速数据库修改。
- 二级缓存机制不佳。
hibernate: - 功能强大,数据库无关性好,O/R映射能力强,如果你对Hibernate相当精通,而且对Hibernate进行了适当的封装,那么你的项目整个持久层代码会相当简单,需要写的代码很少,开发速度很快,非常爽。
- 有更好的二级缓存机制,可以使用第三方缓存。
- 缺点就是学习门槛不低,要精通门槛更高,而且怎么设计O/R映射,在性能和对象模型之间如何权衡取得平衡,以及怎样用好Hibernate方面需要你的经验和能力都很强才行。
举个形象的比喻:
MyBatis:机械工具,使用方便,拿来就用,但工作还是要自己来作,不过工具是活的,怎么使由我决定。
Hibernate:智能机器人,但研发它(学习、熟练度)的成本很高,工作都可以摆脱他了,但仅限于它能做的事。
进程与线程的区别
进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。
- 一个程序至少有一个进程,一个进程至少有一个线程.
- 线程的划分尺度小于进程,使得多线程程序的并发性高。
- 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
- 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
- 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。
HTTP、TCP/IP、Socket的区别
平时还真没有想过这样的问题,第一次回答这个问题时,有那么一丝丝无奈。总结如下:
TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作应用层协议,以封装HTTP 文本信息,然后使用TCP/IP做传输层协议将它发到网络上。”
术语TCP/IP代表传输控制协议/网际协议,指的是一系列协议。“IP”代表网际协议,TCP和UDP使用该协议从一个网络传送数据包到另一个网络。把IP想像成一种高速公路,它允许其它协议在上面行驶并找到到其它电脑的出口。TCP和UDP是高速公路上的“卡车”,它们携带的货物就是像HTTP,文件传输协议FTP这样的协议等。
你应该能理解,TCP和UDP是FTP,HTTP和SMTP之类使用的传输层协议。虽然TCP和UDP都是用来传输其他协议的,它们却有一个显著的不同:TCP提供有保证的数据传输,而UDP不提供。这意味着TCP有一个特殊的机制来确保数据安全的不出错的从一个端点传到另一个端点,而UDP不提供任何这样的保证。
HTTP(超文本传输协议)是利用TCP在两台电脑(通常是Web服务器和客户端)之间传输信息的协议。客户端使用Web浏览器发起HTTP请求给Web服务器,Web服务器发送被请求的信息给客户端
static关键字的作用
修饰变量
一种是被static修饰的变量,叫静态变量或类变量;另一种是没有被static修饰的变量,叫实例变量。两者的区别是:对于静态变量在内存中只有一个拷贝(节省内存),JVM只为静态分配一次内存,在加载类的过程中完成静态变量的内存分配,可用类名直接访问(方便),当然也可以通过对象来访问(但是这是不推荐的)。对于实例变量,没创建一个实例,就会为实例变量分配一次内存,实例变量可以在内存中有多个拷贝,互不影响(灵活)。
修饰方法
静态方法可以直接通过类名调用,任何的实例也都可以调用,因此静态方法中不能用this和super关键字,不能直接访问所属类的实例变量和实例方法(就是不带static的成员变量和成员成员方法),只能访问所属类的静态成员变量和成员方法。
静态代码块
static代码块也叫静态代码块,是在类中独立于类成员的static语句块,可以有多个,位置可以随便放,它不在任何的方法体内,JVM加载类时会执行这些静态的代码块,如果static代码块有多个,JVM将按照它们在类中出现的先后顺序依次执行它们,每个代码块只会被执行一次。
静态内部类
Java中的嵌套类(Nested Class)分为两种:静态内部类(也叫静态嵌套类,Static Nested Class)和内部类(Inner Class)。内部类我们介绍过很多了,现在来看看静态内部类。什么是静态内部类呢?是内部类,并且是静态(static修饰)的即为静态内部类。只有在是静态内部类的情况下才能把static修复符放在类前,其他任何时候static都是不能修饰类的。
静态内部类的形式很好理解,但是为什么需要静态内部类呢?那是因为静态内部类有两个优点:加强了类的封装性和提高了代码的可读性
静态导包
import static静态导入是JDK1.5中的新特性。一般我们导入一个类都用 import com…..ClassName;而静态导入是这样:import static com…..ClassName.*;这里的多了个static,还有就是类名ClassName后面多了个 .* ,意思是导入这个类里的静态方法。当然,也可以只导入某个静态方法,只要把 .* 换成静态方法名就行了。然后在这个类中,就可以直接用方法名调用静态方法,而不必用ClassName.方法名 的方式来调用。
这种方法的好处就是可以简化一些操作,例如打印操作System.out.println(…);就可以将其写入一个静态方法print(…),在使用时直接print(…)就可以了。
但是这种方法建议在有很多重复调用的时候使用,如果仅有一到两次调用,不如直接写来的方便
foeach循环的原理
从Java 5起,在Java中有了for-each循环,可以用来循环遍历collection和array。For each循环允许你在无需保持传统for循环中的索引,或在使用iterator /ListIterator时无需调用while循环中的hasNext()方法就能遍历collection。for-each循环仅应用于实现了Iterable接口的Java array和Collection类,而且既然所有内置Collection类都实现了java.util.Collection接口,已经继承了Iterable,这一细节通常会被忽略,这点可以在Collection接口的类型声明“ public interface Collection extends Iterable”中看到。所以为了解决上述问题,你可以选择简单地让CustomCollection实现Collection接口或者继承AbstractCollection,这是默认的通用实现并展示了如何同时使用抽象类和接口以获取更好的灵活性。在从任何Collection(例如Map、Set或List)中删除对象时总要使用Iterator的remove方法,也请谨记for-each循环只是标准Iterator代码标准用法之上的一种语法糖(syntactic sugar)而已。
valatile实现原理
在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁更加方便。如果一个字段被声明成volatile,java线程内存模型确保所有线程看到这个变量的值是一致的。Volatile变量修饰符如果使用恰当的话,它比synchronized的使用和执行成本会更低,因为它不会引起线程上下文的切换和调度。Volatile变量修饰符如果使用恰当的话,它比synchronized的使用和执行成本会更低,因为它不会引起线程上下文的切换和调度。
有volatile变量修饰的共享变量进行写操作的时候会多第二行汇编代码,通过查IA-32架构软件开发者手册可知,lock前缀的指令在多核处理器下会引发了两件事情。
将当前处理器缓存行的数据会写回到系统内存。
这个写回内存的操作会引起在其他CPU里缓存了该内存地址的数据无效。
处理器为了提高处理速度,不直接和内存进行通讯,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完之后不知道何时会写到内存,如果对声明了Volatile变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题,所以在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作的时候,会强制重新从系统内存里把数据读到处理器缓存里。
这两件事情在IA-32软件开发者架构手册的第三册的多处理器管理章节(第八章)中有详细阐述。
Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的 LOCK# 信号。在多处理器环境中,LOCK# 信号确保在声言该信号期间,处理器可以独占使用任何共享内存。(因为它会锁住总线,导致其他CPU不能访问总线,不能访问总线就意味着不能访问系统内存),但是在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销比较大。在8.1.4章节有详细说明锁定操作对处理器缓存的影响,对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和最近的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反地,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据。
一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处理器使用MESI(修改,独占,共享,无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32 和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。它们使用嗅探技术保证它的内部缓存,系统内存和其他处理器的缓存的数据在总线上保持一致。例如在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处理共享状态,那么正在嗅探的处理器将无效它的缓存行,在下次访问相同内存地址时,强制执行缓存行填充。
final关键字作用
final方法
inal也可以声明方法。方法前面加上final关键字,代表这个方法不可以被子类的方法重写。如果你认为一个方法的功能已经足够完整了,子类中不需要改变的话,你可以声明此方法为final。final方法比非final方法要快,因为在编译的时候已经静态绑定了,不需要在运行时再动态绑定。
final类
使用final来修饰的类叫作final类。final类通常功能是完整的,它们不能被继承。Java中有许多类是final的,譬如String, Interger以及其他包装类。
final好处
final关键字提高了性能。JVM和Java应用都会缓存final变量。
final变量可以安全的在多线程环境下进行共享,而不需要额外的同步开销。
使用final关键字,JVM会对方法、变量及类进行优化。
final知识点
- final关键字可以用于成员变量、本地变量、方法以及类。
- final成员变量必须在声明的时候初始化或者在构造器中初始化,否则就会报编译错误。
- 你不能够对final变量再次赋值。
- 本地变量必须在声明时赋值。
- 在匿名类中所有变量都必须是final变量。
- final方法不能被重写。
- final类不能被继承。
- final关键字不同于finally关键字,后者用于异常处理。
- final关键字容易与finalize()方法搞混,后者是在Object类中定义的方法,是在垃圾回收之前被JVM调用的方法。
- 接口中声明的所有变量本身是final的。
- final和abstract这两个关键字是反相关的,final类就不可能是abstract的。
- final方法在编译阶段绑定,称为静态绑定(static binding)。
- 没有在声明时初始化final变量的称为空白final变量(blank final variable),它们必须在构造器中初始化,或者调用this()初始化。不这么做的话,编译器会报错“final变量(变量名)需要进行初始化”。
- 将类、方法、变量声明为final能够提高性能,这样JVM就有机会进行估计,然后优化。
按照Java代码惯例,final变量就是常量,而且通常常量名要大写:
1 | private final int COUNT = 10; |
对于集合对象声明为final指的是引用不能被更改,但是你可以向其中增加,删除或者改变内容。譬如:
1 | private final List Loans = new ArrayList(); |
transient关键字的作用
Java 语言规范中提到,transient 关键字用来说明指定属性不进行序列化.
Redis的数据结构
在 redis 中一共有5种数据结构,那每种数据结构的使用场景都是什么呢?
- String——字符串
- Hash——字典
- List——列表
- Set——集合
- Sorted Set——有序集合
各自的使用场景:
String——字符串
String 数据结构是简单的 key-value 类型,value 不仅可以是 String,也可以是数字(当数字类型用 Long 可以表示的时候encoding 就是整型,其他都存储在 sdshdr 当做字符串)。使用 Strings 类型,可以完全实现目前 Memcached 的功能,并且效率更高。还可以享受 Redis 的定时持久化(可以选择 RDB 模式或者 AOF 模式),操作日志及 Replication 等功能。除了提供与 Memcached 一样的 get、set、incr、decr 等操作外,Redis 还提供了下面一些操作:
1 | 1.LEN niushuai:O(1)获取字符串长度 |
Hash——字典
在 Memcached 中,我们经常将一些结构化的信息打包成 hashmap,在客户端序列化后存储为一个字符串的值(一般是 JSON 格式),比如用户的昵称、年龄、性别、积分等。这时候在需要修改其中某一项时,通常需要将字符串(JSON)取出来,然后进行反序列化,修改某一项的值,再序列化成字符串(JSON)存储回去。简单修改一个属性就干这么多事情,消耗必定是很大的,也不适用于一些可能并发操作的场合(比如两个并发的操作都需要修改积分)。而 Redis 的 Hash 结构可以使你像在数据库中 Update 一个属性一样只修改某一项属性值。
存储、读取、修改用户属性
List——列表
List 说白了就是链表(redis 使用双端链表实现的 List),相信学过数据结构知识的人都应该能理解其结构。使用 List 结构,我们可以轻松地实现最新消息排行等功能(比如新浪微博的 TimeLine )。List 的另一个应用就是消息队列,可以利用 List 的 PUSH 操作,将任务存在 List 中,然后工作线程再用 POP 操作将任务取出进行执行。Redis 还提供了操作 List 中某一段元素的 API,你可以直接查询,删除 List 中某一段的元素
1 | 1.微博 TimeLine |
Set——集合
Set 就是一个集合,集合的概念就是一堆不重复值的组合。利用 Redis 提供的 Set 数据结构,可以存储一些集合性的数据。比如在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。因为 Redis 非常人性化的为集合提供了求交集、并集、差集等操作,那么就可以非常方便的实现如共同关注、共同喜好、二度好友等功能,对上面的所有集合操作,你还可以使用不同的命令选择将结果返回给客户端还是存集到一个新的集合中。
- 共同好友、二度好友
- 利用唯一性,可以统计访问网站的所有独立 IP
- 好友推荐的时候,根据 tag 求交集,大于某个 threshold 就可以推荐
Sorted Set——有序集合
和Sets相比,Sorted Sets是将 Set 中的元素增加了一个权重参数 score,使得集合中的元素能够按 score 进行有序排列,比如一个存储全班同学成绩的 Sorted Sets,其集合 value 可以是同学的学号,而 score 就可以是其考试得分,这样在数据插入集合的时候,就已经进行了天然的排序。另外还可以用 Sorted Sets 来做带权重的队列,比如普通消息的 score 为1,重要消息的 score 为2,然后工作线程可以选择按 score 的倒序来获取工作任务。让重要的任务优先执行。
1.带有权重的元素,比如一个游戏的用户得分排行榜2.比较复杂的数据结构,一般用到的场景不算太多
ArrayList、LinkedList、Hashtable、HashMap、ConcurrentHashMap、HashSet的实现原理
CopyOnWrite容器和Queue
ConcurrentHashMap的锁分段技术
ConcurrentHashMap的读是否要加锁,为什么
ConcurrentHashMap的迭代器是强一致性的迭代器还是弱一致性的迭代器
常用设计模式的优缺点
Thread和Runnable的区别和联系
多次start一个线程会怎么样
常用的线程池有几种?这几种线程池之间有什么区别和联系?
使用线程池的好处:
- 减少在创建和销毁线程上所花的时间以及系统资源的开销
- 如不使用线程池,有可能造成系统创建大量线程而导致消耗完系统内存
以下是Java自带的几种线程池:
newFixedThreadPool
创建一个指定工作线程数量的线程池。
每当提交一个任务就创建一个工作线程,如果工作线程数量达到线程池初始的最大数,则将提交的任务存入到池队列中。
newCachedThreadPool
创建一个可缓存的线程池。
这种类型的线程池特点是:
1).工作线程的创建数量几乎没有限制(其实也有限制的,数目为Interger. MAX_VALUE), 这样可灵活的往线程池中添加线程。
2).如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为1分钟),则该工作线程将自动终止。终止后,如果你又提交了新的任务,则线程池重新创建一个工作线程。
newSingleThreadExecutor
创建一个单线程化的Executor,即只创建唯一的工作者线程来执行任务,如果这个线程异常结束,会有另一个取代它,保证顺序执行(我觉得这点是它的特色)。
单工作线程最大的特点是可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的 。
newScheduleThreadPool
创建一个定长的线程池,而且支持定时的以及周期性的任务执行,类似于Timer。
总结:
一.FixedThreadPool是一个典型且优秀的线程池,它具有线程池提高程序效率和节省创建线程时所耗的开销的优点。但在线程池空闲时,即线程池中没有可运行任务时,它不会释放工作线程,还会占用一定的系统资源。
二.CachedThreadPool的特点就是在线程池空闲时,即线程池中没有可运行任务时,它会释放工作线程,从而释放工作线程所占用的资源。但是,但当出现新任务时,又要创建一新的工作线程,又要一定的系统开销。并且,在使用CachedThreadPool时,一定要注意控制任务的数量,否则,由于大量线程同时运行,很有会造成系统瘫痪。
线程池的实现原理是怎么样的?
假如有Thread1、Thread2、Thread3、Thread4四条线程分别统计C、D、E、F四个盘的大小,所有线程都统计完毕交给Thread5线程去做汇总,应当如何实现?
synchronized和ReentrantLock的区别
Java在编写多线程程序时,为了保证线程安全,需要对数据同步,经常用到两种同步方式就是Synchronized和重入锁ReentrantLock。
相似点:
这两种同步方式有很多相似之处,它们都是加锁方式同步,而且都是阻塞式的同步,也就是说当如果一个线程获得了对象锁,进入了同步块,其他访问该同步块的线程都必须阻塞在同步块外面等待,而进行线程阻塞和唤醒的代价是比较高的(操作系统需要在用户态与内核态之间来回切换,代价很高,不过可以通过对锁优化进行改善)。
区别:
这两种方式最大区别就是对于Synchronized来说,它是java语言的关键字,是原生语法层面的互斥,需要jvm实现。而ReentrantLock它是JDK 1.5之后提供的API层面的互斥锁,需要lock()和unlock()方法配合try/finally语句块来完成。
Synchronized
Synchronized进过编译,会在同步块的前后分别形成monitorenter和monitorexit这个两个字节码指令。在执行monitorenter指令时,首先要尝试获取对象锁。如果这个对象没被锁定,或者当前线程已经拥有了那个对象锁,把锁的计算器加1,相应的,在执行monitorexit指令时会将锁计算器就减1,当计算器为0时,锁就被释放了。如果获取对象锁失败,那当前线程就要阻塞,直到对象锁被另一个线程释放为止。
ReentrantLock
由于ReentrantLock是java.util.concurrent包下提供的一套互斥锁,相比Synchronized,ReentrantLock类提供了一些高级功能,主要有以下3项:
1.等待可中断,持有锁的线程长期不释放的时候,正在等待的线程可以选择放弃等待,这相当于Synchronized来说可以避免出现死锁的情况。
2.公平锁,多个线程等待同一个锁时,必须按照申请锁的时间顺序获得锁,Synchronized锁非公平锁,ReentrantLock默认的构造函数是创建的非公平锁,可以通过参数true设为公平锁,但公平锁表现的性能不是很好。
3.锁绑定多个条件,一个ReentrantLock对象可以同时绑定对个对象。
synchronized锁普通方法和锁静态方法、死锁的原理及排查方法
String的hashCode()方法是怎么实现的
List、Map、Set实现类的源代码
ReentrantLock、AQS的源代码
AtomicInteger的实现原理,主要能说清楚CAS机制并且AtomicInteger是如何利用CAS机制实现的
线程池的实现原理
Object类中的方法以及每个方法的作用
想要在Spring初始化bean的时候做一些事情该怎么做
想要在bean销毁的时候做一些事情该怎么做
MyBatis中$和#的区别
AVL树、红黑树,可以不了解它们的具体实现,但是要知道什么是二叉查找树、什么是平衡树,AVL树和红黑树的区别。
索引使用的是哪种数据结构实现
索引为什么要使用树来实现呢
Collections.sort方法使用的是哪种排序方法
(1)Java虚拟机的内存布局
(2)GC算法及几种垃圾收集器
(3)类加载机制,也就是双亲委派模型
(4)Java内存模型
(5)happens-before规则
(6)volatile关键字使用规则
谈谈分布式Session的几种实现方式
讲一下Session和Cookie的区别和联系以及Session的实现原理
XML文档定义有几种形式?它们之间有何本质区别?解析XML文档有哪几种方式?
两种定义形式 dtd(文档类型定义) schema(XML模式);
它们之间有何本质区别?
XML Schema和DTD(Document Type Define)都用于文档验证,但二者还有一定区别,本质区别:schema本身是xml的,可以被XML解析器解析(这也是从DTD上发展schema的根本目的)。另外:
XML Schema是内容开放模型,可扩展,功能性强;而DTD可扩展性差;
XML Schema支持丰富的数据类型,而DTD不支持元素的数据类型,对属性的类型定义也很有限;
XML Schema支持命名空间机制,而DTD不支持;
XML Schema可针对不同情况对整个XML文档或文档局部进行验证;而DTD缺乏这种灵活性;
XML Schema完全遵循XML规范,符合XML语法,可以和DOM结合使用,功能强大;而DTD语法本身有自身的语法和要求,难以学习;
解析XML文档有哪几种方式?
有DOM(文档对象模型),SAX(Simple API for XML),STAX等
DOM:文档驱动,处理大型文件时其性能下降的非常厉害。这个问题是由DOM的树结构所造成的,这种结构占用的内存较多,而且DOM必须在解析文件之前把整个文档装入内存,适合对XML的随机访问
SAX:不同于DOM,SAX是事件驱动型的XML解析方式。它顺序读取XML文件,不需要一次全部装载整个文件。当遇到像文件开头,文档结束,或者标签开头与标签结束时,它会触发一个事件,用户通过在其回调事件中写入处理代码来处理XML文件,适合对XML的顺序访问,且是只读的。当前浏览器不支持SAX
SAXParserFactory factory= SAXParserFactory.newInstance();
SAXParser saxparser= factory.newSAXParser();//创建SAX解析器
MyHandler handler=new MyHandler();//创建事件处理器
saxParser.parse(new File(“Sax_1.xml”),handler);//绑定文件和事件处理者
STAX:Streaming API for XML (StAX) Streaming API for XML (StAX)
是用 Java™ 语言处理 XML 的最新标准。StAX 与其他方法的区别就在于应用程序能够把 XML 作为一个事件流来处理。StAX 允许应用程序代码把这些事件逐个拉出来,而不用提供在解析器方便时从解析器中接收事件的处理程序。
jsp和servlet的区别和联系
- jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能够识别的java类)
- jsp更擅长表现于页面显示,servlet更擅长于逻辑控制.
- Servlet中没有内置对象,Jsp中的内置对象都是必须通过HttpServletRequest对象,HttpServletResponse对象以及HttpServlet对象得到.
Jsp是Servlet的一种简化,使用Jsp只需要完成程序员需要输出到客户端的内容,Jsp中的Java脚本如何镶嵌到一个类中,由Jsp容器完成。而Servlet则是个完整的Java类,这个类的Service方法用于生成对客户端的响应。
联系: JSP是Servlet技术的扩展,本质上就是Servlet的简易方式。JSP编译后是“类servlet”。Servlet和JSP最主要的不同点在于,Servlet的应用逻辑是在Java文件中,并且完全从表示层中的HTML里分离开来。而JSP的情况是Java和HTML可以组合成一个扩展名为.jsp的文件。JSP侧重于视图,Servlet主要用于控制逻辑。
一个“.java”源文件中是否可以包括多个类(不包括内部类)?有什么限制?
可以的,一个“.java”源文件里面可以包含多个类,但是只允许有一个public类,并且类名必须和文件名一致。每个编译单元只能有一个public 类。这么做的意思是,每个编译单元只能有一个公开的接口,而这个接口就由其public 类来表示。你可以根据需要,往这个文件里面添加任意多个提供辅助功能的package 权限的类。但是如果这个编译单元里面有两个或两个以上的public 类的话,程序就不知道从哪里导入了,编译器就会报错。